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Abstract 

The suitability of different functions used for anhar- 
monic temperature factors in describing anharmonic- 
ity in structures is studied from the point of view of 
whether the respective probability density functions 
(p.d.f.'s) (isolated-atom-potential expansions, Gram- 
Charlier series, p.d.f, of the cumulant expansion of 
the temperature factor) are non-negative for the final 
values of the parameters. Certain central moments of 
the p.d.f, should also not become negative. Analytical 
formulae have been derived for the central moments 
of several (different) p.d.f.'s. 20 p.d.f.'s of atoms in 
published structures have been examined, their nega- 
tive volumes determined by numerical integration and 
their central moments calculated. For Al(4) in the 
structure of VAl~o.42 at 293 K (strong anharmonicity) 
the negative volume was -0.238 and several moments 
were negative. Here the temperature factor and p.d.f. 
used are not acceptable. For the remaining structures 
(weak anharmonicity) the negative volumes found 
were <1-0.031 and the respective central moments 
were positive. Temperature factors and p.d.f.'s proved 
to be acceptable except for the cumulant expansion. 
In some cases its p.d.f, is not accessible, and, if it is, 
its negative volumes were found to be relatively large. 
A p.d.f, is proposed which is non-negative for all 
values of the parameters and whose Fourier transform 
can be derived in analytical form. An explicit formula 
is given for the cubic site symmetries. 

I. Introduction 

The commonly used functions for anharmonic proba- 
bility density functions (abbreviated p.d.f.'s), i.e. the 
isolated-atom-potential expansions of the Boltzmann 
function (Willis, 1969; Willis & Pryor, 1975; Tanaka 
& Marumo, 1983; Scheringer, 1985a), the Fourier- 
invariant expansions of the Boltzmannn function 
(Merisalo & Larsen, 1977; Kurki-Suonio, Merisalo & 
Peltonen, 1979; Rossmanith, 1984) and the Gram- 
Charlier series (International Tables for X-ray Crystal- 
lography, 1974, p. 316; Zucker & Schulz, 1982; Kuhs, 
1983) do not exclude that they may become negative 
for certain values of the parameters. By definition, a 
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p.d.f, should be non-negative everywhere. If the nega- 
tive volume is large, the function used with the set 
of given parameters cannot be accepted on physical 
grounds and should be eliminated. For the cumulant 
expansion (Johnson, 1969, 1970) of the temperature 
factor (abbreviated t.f.), the p.d.f, is not known but 
we have shown earlier (Marcinkiewicz, 1938; Scherin- 
get, 1985b) that it always has some negative volume, 
although of unknown size. For the isolated-atom- 
potential p.d.f. (abbreviated IAP p.d.f.), Mackenzie 
& Mair (1985) arrive at a similar conclusion: the IAP 
p.d.f. (moment expansion) ' . . .  always [i.e. for any 
set of parameters] goes negative for some value of 
[the argument] x . . .  and so is not a proper p.d.f.'. It 
will be shown that this statement is not valid to this 
degree of generality. Apart from this, Mackenzie & 
Mair (1985) have shown by means of one- 
dimensional model calculations that the negative 
volumes of the p.d.f.'s are small in the case of weak 
anharmonicity. 

In this paper several structures are selected from 
the literature where anharmonic refinements were 
reported, and the negative volumes of the p.d.f.'s are 
determined by means of numerical integration. In this 
way we could examine the usability of a p.d.f, for the 
given values of the parameters in a structure. Another 
approach to obtain insight into the quality of a p.d.f. 
is given by the evaluation of its central moments. 
Certain moments should be non-negative if the p.d.f. 
is non-negative everywhere. Calculation of the 
moments of the p.d.f, renders the numerical integra- 
tion of the negative volumes superfluous to some 
extent. We have derived analytical expressions for 
the central moments of several (different) p.d.f.'s. In 
this way the control of the quality of a p.d.f, is 
simplified. The examination of the cumulant expan- 
sion of the t.f. (Johnson, 1969, 1970) poses some 
special problems which we shall discuss. Finally, we 
shall show that it is possible to construct p.d.f.'s 
which are non-negative everywhere for every set of 
parameters. 

2. Calculation of  the negative volumes 
and central moments of a p.d.f. 

Negative volumes 

For a p.d.f, f (u) ,  the normalization condition 
~ f ( u ) d u = l ,  u=vibra t ional  coordinates of the 

O 1988 International Union of Crystallography 



344 NEGATIVE VOLUMES AND CENTRAL MOMENTS OF ANHARMONIC P.D.F.'s 

respective atom, must be fulfilled, so that also 

negative volume + positive volume = 1, (1) 

where the negative volume has to be counted with a 
negative sign. With the given values of the parameters 
of the atom, we have integrated the p.d.f, in the three 
space dimensions and have summed the negative and 
positive contributions of the p.d.f, separately. The 
normalization (1) was fulfilled with deviations of 
<10 -6 (IBM double precision, 9261 grid points), 
except for the cumulant expansion (see below). 
Moreover, the correct performance of the integration 
and the correct input of the p.d.f, were controlled, 
on the one hand, by the numerical integration and, 
on the other hand, by the analytical calculation of 
the moments of u (see below). 

The treatment of the cumulant expansion of the 
t.f. needs some special comments because the p.d.f. 
is not known analytically and in many cases is not 
accessible to the investigator. The p.d.f, is defined 
only if the inverse Fourier transform of the t.f. T(Q) 
exists, i.e. if J I T(Q)I dQ is finite (Q = 27rh= vector in 
reciprocal space). With the majority of structures, 
however, the t.f. diverges for Q--> ~.  Then, formally, 
a p.d.f, of the cumulant expansion would not exist, 
but in the crystal some p.d.f, is present. In this situ- 
ation a p.d.f, of the cumulant expansion is fitted to 
the p.d.f, present in the crystal by virtue of the fact 
that, in the interpretation of experimental data, the 
t.f. is only used in a limited range, Q < Qma×. In the 
range Q > Qmax a continuation of the t.f. other than 
the cumulant expansion can be used (Scheringer, 
1985b). The optimum continuation of the t.f., i.e. that 
continuation which fits best the motions of the atom 
in the crystal, is unknown and thus the corresponding 
optimum p.d.f, is not accessible to the investigator. 
In this situation, the investigator may choose a 
sufficiently convergent continuation of the t.f. in the 
range Q > Qmax and thus establish a p.d.f, which he 
might be able to evaluate numerically in favourable 
cases. Here we have chosen almost the simplest pro- 
cedure possible. We have calculated the t.f. up to its 
minimum in reciprocal space according to the 
cumulant expansion, and beyond the minimum we 
have put the t.f. equal to zero (certainly, this is not 
the optimum continuation). The values of the p.d.f. 
were then calculated for 9261 grid points by numerical 
Fourier inversion of the t.f. This inversion was calcu- 
lated in the range IT(Q)l->minimum{lT(Q)l} with 
more than 10000 grid points, and so a numerical 
precision of at least five decimal places was achieved. 

Central moments  

The numerical evaluation of the moments of u 
follows from their definition via the integral 

( u , u ~ .  . . u k ) n  = ~ u , u j .  . . ukf(u) duln. (2) 

i, j, k = 1, 2, 3 denote the directions of space, n is the 
order of the moment [i.e. there are n factors u i , . . .  
in (2)]. The moments can also be obtained from the 
Fourier transform of the p.d.f, f(u),  i.e. from the t.f. 
T(Q) according to 

~"T(Q) I (3/ (uiu~. . . Uk),, - - i"OQi--~j . . .  OQk O=o 

(Kendall & Stuart, 1969). The evaluation of (2) 
requires numerical integration procedures (in most 
cases) whereas (3) denotes essentially an analytical 
formalism. We assume (u)= 0 throughout and thus 
obtain the central moments. We have derived several 
explicit formulae from (3) and collected them in the 
Appendix. The evaluation of (3) is straightforward 
in principle but is cumbersome for n > 4 and open 
to chances for making errors. However, the results 
obtained from (2) and (3) can be used to control each 
other mutually. In this way we have controlled all 
formulae given in the Appendix by numerical integra- 
tion via (2). Formulae for the moments of the 
cumulant expansion up to n = 4 are given in Inter- 
national Tables for  X-ray Crystallography (1974, p. 
317); however, they are only valid if the t.f. does not 
diverge. 

For the Gram-Charlier series, another and simpler 
way of calculating the central moments can be found 
than from (3). Equations (6.30) and (6.31) of Kendall 
& Stuart (1969) (one-dimensional case) show that the 
quasi-moments "C of order n can be linearly 
expressed by the central moments, where the 
coefficients occurring are those in the Hermite poly- 
nomial of order n. If one solves these equations for 
the moments, the coefficients are preserved but all 
signs become positive. The three-dimensional 
extension of this procedure leads to the result 

( u , u j . . .  up). = "C,jp + {"-2C0 k~rop} 

+ { " -4 C ,j.. k o'tmO'op } 

+ . . .  + last term. (4) 

The last term in (4) for n even (zero-order term) is 

{or0... O'op}, (5a) 

and for n odd (third-order term, since ~C = 0) 

{' C,jkcrt,,... crop }, (5 b) 
with i,j, k , . . . ,  o, p -- 1, 2, 3. crij are the elements of 
the covariance matrix of the leading Gaussian func- 
tion in the Gram-Charlier series. The brackets { } 
denote that all permutations of the space indices 
i, j, k , . . .  which produce different results have to be 
included. [This situation is fully parallel to the evalu- 
ation of the coefficients in the Hermite polynomials; 
see International Tables for  X-ray Crystallography 
(1974), p. 316.] The number of permutations for site 
symmetry 1, and for the case i = j  = k = . . .  for all site 
symmetries, is p , s = n ! / [ 2 S ( n - 2 s ) ! s ? ]  where s 
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denotes the number of o-'s in a bracket { } of (4); see 
Scheringer (1985a). If some of the indices i,j, k , . . .  
refer to different directions of space, the number of 
permutations is reduced for site symmetries higher 
than 1. Since it is often not trivial to evaluate the 
remaining permutations, we have given the central 
moments up to n = 8 for the cubic site symmetries 
explicitly in the Appendix. With (u)= 0, the origin of 
u being at the mean of the p.d.f., we have 1C = 0. One 
usually also puts 2C = 0 since there is no chance to 
determine anharmonic second-order terms separately 
from or. With I C = 0  there are ( n - l ) / 2  terms in (4) 
for n odd, and with 2C = 0 there are n/2 terms in (4) 
for n even. 

For p.d.f.'s which are non-negative everywhere, the 
following statements hold: 

(1) All moments which contain only even powers 
of ui , . . ,  are positive. 

(2) 
( U 6 ) 1 / 6 ~  , 4\1/4. .~. / ,  2\1/2 ( - i /  = \ " i /  • (6) 

For a Gaussian distribution with (u~ )= l ,  (6) 
assumes the form 151/6>31/4>1, i.e. 1.5704> 
1.3161 > 1. Furthermore, physical arguments require 
that (u~) should grow with increasing temperature. 
Unfortunately, there are no conditions for the 
moments of odd order. 

3. Results obtained for some structures 
from the literature 

Most of the anharmonic investigations were per- 
formed for atoms with high site symmetry [see, for 
example, Tanaka & Marumo (1983), Table 1]. Our 
own selection is correspondingly restricted. The struc- 
tures, the atoms in the structure whose p.d.f, was 
examined and the calculated negative volumes are 
given in Table 1. Except for A1 in VA1 lo.42 and Pb in 
CsPbCI3, the negative volumes found are small 
(<1-0.0281). Correspondingly, the central moments 
(up to n = 6 or n = 8 respectively) with even powers 
of u i , . . ,  are all positive, and (6) is fulfilled. With 
these structures, the anharmonic standard functions 
used prove to be sufficient. The physical reason is 
probably that in these structures the anharmonicity 
is weak. In the following we shall discuss some of 
the results obtained in more detail. 

A1, NaCI and KC1 represent a case where the lAP 
p.d.f, is non-negative everywhere in the full range of 
'Y negative'. Even the exceedingly large absolute 
value of 3' = -38  x 10 -19 J A -4 (Willis & Pryor, 1975, 
p. 164) for Na in NaCI does not produce a negative 
value of the p.d.f. Thus the IAP expansion appears 
to be particularly favourable for this sort of anhar- 
monicity. 

With those structures (ZnS, CsPbC13 and VAllo.42) 
which were refined with the cumulant expansion, we 
have to take into account the convergence properties 

Table 1. Negative probability density volumes calcu- 
lated for 20 p.d.f.'s taken from the literature 

The a tom conce rned  is given in parentheses .  R T = r o o m  tem- 
perature ,  l A P = i s o l a t e d - a t o m  potent ia l ,  F O U R  I N V = F o u r i e r  
invar iant  fo rmula t ion  of  the i so la ted-a tom potent ia l ,  C U M =  
cumulan t  expans ion  o f  the t.f., G R C H  = G r a m - C h a r l i e r  series. 
G R C H *  indicates  that  the G r a m - C h a r l i e r  series was ca lcula ted  by 
us with the pa rame te r s  taken f rom the cumulan t  expans ion .  

P.d.f. Negat ive  
Subs tance  or t.f. vo lume  Reference  

AI, NaCI, KCI, RT lAP 0.000 Willis & Pryor (1975) 
Si, many T lAP 0.000 
CsPbCI 3 (Pb), RT CUM -0.228 Hutton, Nelmes, Meyer 

& Eiriksson (1979) 
CsPbCI 3 (Pb), RT GRCH* 0-000 
BaTiO3 (Ti), RT lAP -0.004 Tanaka, Shiozaki & 

Sawaguchi (1979) 
Zn, RT FOUR INV -0.006 Merisalo & Larsen 

(1977) 
Zn, RT FOUR INV 0.000 Rossmanith (1984) 
Cd, RT FOUR INV 0-000 
ZnS (S), 676 K IAP -0.002 Moss, McMullan & 

Koetzle (1980) 
ZnS (S), 676 K CUM -0.010 
ZnS (S), 676 K GRCH* -0-006 
ZnS (Zn), 676 K lAP 0.000 
ZnS (Zn), 676 K CUM -0.005 
ZnS (Zn), 676 K GRCH* 0.000 
PbF 2 (Pb), RT GRCH -0.005 Schulz, Perenthaler & 

Zucker (1982) 
PbF2 (F), 625 K GRCH -0.008 
AI20 3 (O), 2170 K lAP -0.028 Tanaka & Marumo 

(1983) 
KCuF 3 (Cu), RT lAP -0.001 
VA11o.42 (AI), 100 K CUM -0.159 Kontio & Stevens (1982) 
VAllo.42 (AI), 100 K GRCH* -0-080 
VAllo.42 (ml), 100 K lAP -0.124 
VAlt0.42 (AI), 293 K CUM -0.171 
VAILo.42 (AI), 293 K GRCH* -0"161 
VAlto.n2(Al), 293 K lAP -0.239 

of the t.f. With S in ZnS, the t.f. converges and the 
negative volumes found are reliable. With Zn in ZnS, 
Pb in CsPbC13 and A1 in VAl10.42 the t.f. diverges but 
to different extents. With Zn divergence occurs in all 
three directions of space but the minimum of I T(Q)I 
is <0.004 everywhere. Termination of the Fourier 
inversion beyond the minimum does not impair the 
results and the negative volume of -0.0048 appears 
to be reliable. With Pb in CsPbC13 (divergence in all 
three directions of space) the minimum of IT(Q)[ is 
0.067 in the [100] direction, and termination of the 
Fourier inversion no longer produces a meaningful 
p.d.f. Thus the negative volume of -0.228 found is 
an artifact. With A1 in VAllo.42 (divergence only in 
the [111] direction) the minimum of IT(Q)[ is 0.074 
at 100 K and 0.006 at 293 K. Termination of the 
Fourier inversion impairs the results at 100K. 
However, Kontio & Stevens (1982) have derived lAP 
parameters from the parameters of the cumulant 
expansion, and we have also used the IAP parameters 
to calculate the negative volumes of the lAP p.d.f.'s, 
-0 .124 at 100 K and -0 .239 at 293 K. These figures 
show that the negative volume which one would 
obtain for a p.d.f, corresponding to an optimum 
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continuation of the cumulant t.f. beyond the experi- 
mental limit would also be large. 

As a further control of the results obtained with 
cumulant expansion, we have put the parameters of 
the cumulant expansion into the Gram-Charlier 
series and calculated the negative volume from this 
series (GRCH* results in Table 1). (This procedure 
appears to be legitimate because the cumulant 
expansion of the t.f. and the Fourier transform of the 
Gram-Charlier series represent very similar 
expansions.) For ZnS the GRCH* calculation essen- 
tially confirms the results obtained with the cumulant 
expansion. For Pb in CsPbC13 the GRCH* calculation 
(negative volume 0-000) also shows that the value 
obtained with the cumulant expansion (-0-228) is an 
artifact. For A1 in VAllo.42, the GRCH* calculation 
(-0.080 at 100 K and -0.161 at 293 K) essentially 
confirms the results obtained with the lAP p.d.f, and 
shows that the p.d.f, of the cumulant expansion must 
have a large negative volume. 

Obviously, A1 in VA1 lo.42 represents a case of strong 
anharmonicity where the standard anharmonic 
functions break down. This is also indicated by the 
occurrence of several negative moments. The Gram- 
Charlier series at 100 K has negative moments with 
the indices 111111 and 11111111, and at 293 K with 
the indices 1111, 111111, 11111111 and l l l l l 1 2 2 .  The 
lAP p.d.f, at 100 K has negative moments with the 
indices 1111, 111111, 111122 and 112233, and at 293 K 
all five moments of fourth and sixth order are nega- 
tive. Of course (6) is not fulfilled. The second 
moments (u2), i = 1, 2, 3, of the lAP p.d.f, at 293 K 
are smaller than those at 100 K, in contradiction to 
physical requirements. 

We may point out that plots of one-dimensional 
sections of a p.d.f, may easily lead one to incorrect 
conclusions. As an example we show the [100] section 
of the IAP p.d.f, of AI in VA110.42 (see Fig. 1, full 
line). The negative volume of this section is about 
-0-05 and thus its absolute value is distinctly smaller 
than that of the three-dimensional negative volume 
of -0.239. The negative volumes usually appear at 
large values of u and are weighted in three dimensions 
with a factor of 47ru 2, on average. Therefore, the 
one-dimensional plots published by Mackenzie & 
Mair (1985) may suggest an incorrect impression of 
the negative volumes of three-dimensional p.d.f.'s 
that actually occur. 

4. Deficiencies of the cumulant expansion 

Since the cumulant expansion of the t.f. and the 
Fourier transform of the Gram-Charlier series are 
quite similar expansions (International Tables for X- 
ray Crystallography, 1974, pp. 316-317), one might 
assume that the two expansions are equally useful in 
actual refinements. In the past, this assumption has 
been enforced by the fact that Johnson (1970) has 

described the p.d.f, of the cumulant expansion by an 
expansion in Hermite polynomials, quite similar to 
the Gram-Charlier series. This expansion, however, 
is only a first approximation and it only holds if the 
t.f. does not diverge (Scheringer, 1985b). We cannot 
support a high estimation of the cumulant expansion, 
and here we give the arguments that should contribute 
to rule out its use in anharmonic refinements. We 
further refer to the experiences reported by Zucker 
& Schulz (1982) and Kuhs (1983), which have led 
these authors to express a similarly negative judge- 
ment on the usefulness of the cumulant expansion. 

(1) We have performed many model calculations 
for convergent and slightly divergent cumulant 
expansions. In all cases the absolute values of the 
negative volumes found for the p.d.f, of the cumulant 
expansion were larger than those of the correspond- 
ing GRCH* series (larger by a factor of about 1.2- 
1-8). See also the results for ZnS in Table 1. In 
this way we could confirm the theorem given by 
Marcinkiewicz (1938) (Scheringer, 1985b) by detailed 
numerical results. 

(2) If the cumulant expansion diverges more 
strongly (many practical cases), the p.d.f, that is pres- 
ent in the crystal is not accessible to the investigator, 
not even in an approximate form (example: Pb in 
CsPbCI3). Similarly, the formulae for the central 
moments are no longer valid. Hence, the investigator 
has no chance to judge the results of the refinement 
by means of the p.d.f. 

(3) The absolute values of the third-order tensors 
in the cumulant expansion cannot be determined, 
since they only affect the phases of the structure 
factors but not the intensities (Hazell & Willis, 1978). 
(With the Gram-Charlier series, this deficiency does 
not occur.) 

5. P.d.f.'s which are non-negative everywhere 

Certainly, it would be much better if the functions 
for anharmonic p.d.f.'s were of such a kind that they 
could never assume negative values. Then there would 
be no need to determine negative volumes. The 
Boltzmann function satisfies this requirement but has 
two severe deficiencies (see below), and the lAP p.d.f. 
satisfies this requirement for certain ranges of the 
parameters (see below). A p.d.f, which is non-negative 
everywhere for all values of the parameters and whose 
Fourier transform can be evaluated analytically is 
proposed for the first time in this section. 

Although the Boltzmann function is non-negative 
everywhere, its application in actual refinements is 
strongly impaired by the following two deficiencies: 

(1) For certain signs of the high-order parameter, 
the Boltzmann function diverges and no longer rep- 
resents a p.d.f. Thus, in actual refinements the tran- 
sition from a convergent to a divergent Boltzmann 
function would always be possible. 
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(2) The Fourier transform of the (convergent) 
Boltzmann function is not known analytically and 
would have to be determined numerically. 

The lAP p.d.f, up to anharmonic fourth-order terms 
is non-negative if all fourth-order parameters are 
negative and the third-order parameters are small. 
For the cubic site symmetries m 3 m ,  432 and m3 this 
reduces to the parameter range ' y  negative' (AI, NaCI, 
KCI). '3' negative' is a favourable case for the lAP 
p.d.f, whereas the Boltzmann function could not be 
used since it would diverge. 

The lAP approach offers the chance for construct- 
ing p.d.f.'s which are non-negative everywhere. The 
expression 

exp ( - x )  ~- 1 - x  + CX 2 = (1 - x / 2 ) 2 + ( 4 c  - 1)x2/4 

(7) 
is non-negative for all values of x if c-> ¼. When we 
apply this result to the IAP p.d.f., we have to put x 
equal to the total of the anharmonic terms. For cubic 
site symmetry the IAP p.d.f, assumes the form 

f (u)  = g(u)(1 - x + cx2) /  P, (8) 

where g(u) is the normalized Gaussian function and 
P the factor of normalization. With the commonly 
used IAP p.d.f, up to fourth-order terms we have 

X ~--- [ ~ U  1//2l/3 "~- 3'/,/4 .~_ ~ (  U~ ~t- /,/~ .at- U~__3U 4) ] / ( k s T ) ,  

(9) 

where u 4= (u2+ u2+ u2) 2 (see Willis & Pryor, 1975). 
ks is Boltzmann's constant and T the absolute tem- 
perature. The Fourier transform of the p.d.f. (8) and 
(9) can be evaluated by means of Hermite poly- 
nomials in reciprocal space (Scheringer, 1985 a). The 
representation in terms of Hermite polynomials is 
given in the material for deposit,* the final form of 
the t.f. in the Appendix. The factor of normalization 
in (8) is found to be 

1--o-2153' C{o-3~ +o'419453'2+(144/5)82]} 
p _  ~- 

k s T  (kBr)  2 ' 
(10) 

where o.2 is the variance of the Gaussian function. 
The final formula of the t.f. has been controlled by a 
comparison of the second to seventh moments that 
were obtained analytically from the t.f. and numeri- 
cally by integration. 

As an example of the effect of the parameter c on 
the shape of  the p.d.f., we have calculated the IAP 
p.d.f.'s for c = 0, c = ¼, c = ½ and the Boltzmann func- 
tion for A1 in VAllo.42 at 293 K. The [100] sections 

* The Hermite polynomials up to eighth order and the poly- 
nomial representation of the t.f. have been deposited with the 
British Library Document Supply Centre as Supplementary Publi- 
cation No. SUP 44630 (4 pp.). Copies may be obtained through 
The Executive Secretary, International Union of Crystallography, 
5 Abbey Square, Chester CH1 2HU, England. 

of these four p.d.f.'s are shown in Fig. 1. The lAP 
p.d.f, with c = ¼ approximates the Boltzmann function 
fairly well. Apart from that c = ~ seems to be the best 
choice for c because the side maxima arising are kept 
to a minimum. 

6. Discussion 

If we consider the results of this work (Table 1) as 
characteristic for the universe of structures, we should 
suppose that the negative volumes will rarely exceed 
an absolute value of 0.03. In this range the central 
moments with even powers of ui up to sixth order 
are usually positive (exceptions have been found). 
Thus, the anharmonic standard functions are expec- 
ted to work well in many cases, probably because the 
anharmonicity is weak in many structures, even at 
high temperatures. Still, a control is recommended in 
a particular investigation. The simplest way is to 
calculate the central moments up to n = 6 analytically. 
An aid is offered by the formulae given for the 
moments of  the Gram-Char l ie r  series, (4) and (5), 
and by the formulae given in the Appendix for cubic 
site symmetries and 6rn2. Unfortunately, the test with 
the moments breaks down if the negative volumes 
are due to large values of  the odd-order tensors; here 
the numerical integration of the p.d.f, is the only safe 
device. The cumulant expansion of the t.f. suffers 
from severe deficiencies and should no longer be used 
in refinements. If the anharmonicity is strong and the 
standard functions break down, one can introduce 
quadratic terms of all anharmonic terms in an lAP 
p.d.f, and so obtain a p.d.f, which is non-negative 
everywhere. The corresponding t.f. can be evaluated 

-\ 

~ . . . ' ~ . .  :~.j.~.: ....'~...~ ,,,,, . . . .  

o15 ~ .~J 

Fig. 1. Plots of four [100] sections of lAP p.d.f.'s for Al in VAl~0.42 
at 293 K. The parameters used in all four p.d.f.'s were taken 
from Kontio & Stevens (1982, Table 3). Linear IAP expansion 
(c=0): full line. Boltzmann function: dashed. Quadratic IAP 
expansion (c = ¼): dotted (otherwise indistinguishable from the 
Boltzmann function in this drawing). Quadratic IAP expansion 
(c = ½): dash-dotted. 
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by means of  Hermite polynomials  in reciprocal space 
and thus can be obtained in analytical form. This can 
be done for every site symmetry.  For cubic site sym- 
metry we have derived the t.f. explicitly. Among all 
values of  the parameter  c, c=¼ approximates  the 
(convergent) Boltzmann function best. 

APPENDIX 

Central moments for cubic site symmetry 

We abbreviate the variance of the leading Gaussian 
function by (u 2) = 00 for i = 1, 2, 3, and the moments  
by writing only their indices, e.g. (u~)= 11. 

Moments of the IAP p.d.f (8), (9) and (10) 

We abbreviate C = c(knT) -2. 

11 = 00 + P - l ( -20yo-3 / (kBT)  

+ C {2/3 2or 4 + [25203, 2 + ( 1920/25)821o- 5}), 

123 = P-~{-/3003/(k~T) + cfl[ 198 r - (144/5)8 ] 005}, 

1111 = 30 .2 + p - l ( _ ( k B T ) - l [  144r  + (48/5)6 ]0 .4 

+ C{12/32trs+[24192y2+ (13728/5)3,8 

+ (21888/25)621006}), 

1122 = 002 + p - l ( _  (knT)-~[48 3, - (24/5)6 ]004 

+ C{8/3200 5 +[80643,2-(6864/5)3,6 

+ (4416/25)62100 6}), 

11123= P-l {-3/3004/ ( k~T) 

+ C[858/3y-(624/5)/381006}, 

111111 = 1500 3 + P-l{-(kBT)-l(12603, + 1448)00 5 

+ C[90/32006 + (2754003,2+ 561603,8 

+ 1152062) 007]}, 

111122= 300 3 + P-I{-(knT)-I[2523,-(96/5)61005 

+ C [42/3 2006 + (5 5080 32 _ 7488 3,6 

+ 115262)007]}, 

112233 = o .3 + P-~{-(knT)-11843,-(72/5)]00 5 

+ C[26/32006 + (183603, 2 - 5616"/6 

+ 57662)crV]}, 

1111123= P-l{-15/3005/(k~T) 

+ C (5850/33, - 720/38 )007}, 

1222333 = P-~[-9/3005/(k~T) 

+ C(3510/3y- 576/38)o-7]. 

Moments of the Gram- Charlier series 

The p.d.f, is given by equat ion (2) of International 
Tables for X-ray Crystallography (1974, p. 316), and 

should be correspondingly extended to higher terms. 

11 = 00, 123 = C123, 1111 = Cl111 +300 2, 

1122= C1122+o "2, 11123=3C123 o', 

111111 = Cl l t l l l  + 15Cll l100+ 15 O'3, 

111122= CII1122+(Cl111+6CI122)00+3o "3, 

112233 = Cl12233 +3C112200+ 00 3, 

1111123 = C1111123 + 1 0 C l 1 1 2 3 o ' +  15C12300 2, 

1222333 = CI222333+6C1112300+9C12300 2, 

11111111 = C11111111+ 28C l1111100 + 210C l11100 2 

+ 10500 4, 

11111122 = C11111122+ (Cll1111 + 15C111122)00 

+ (15Cl l l l  + 45 Ci 122)002 + 1500 4, 

11112222 = C11112222+ 12C11112200 

+ (6Cl111 + 36Cl122)002 + 9o "4, 

11112233 = C11112233 + (2Cl11122+6Cl!2233)00 

+ (Cllzl  + 15C1122)002+ 30 "4. 

Moments of the Fourier-invariant p.d.f, for site 
symmetry 6m2 

The p.d.f, is given by Merisalo & Larsen (1977), 
equations (2), (4), and (7), as used for Zn and Cd. 
We first express the quantit ies A, B, C, D and E in 
terms of the thermal parameters  32o, /300, •40, /320, 
Yoo used by Merisalo & Larsen (1977). 

A 2 = (2/3oo- a2o)/(kBT) = 00-(1, 

B 2 = 2(/300 + 32o)/(kBT) = 003 ' ,  

C = (334o-  4/32o + 83,00)/(8A4kBT), 

D =  (C~4o +/320+ 3,00)/(B4k~T), 

E = (6t~4o-/320-43'00)/(2A 2B2kBT). 

The central moments  are then given by 

11 = o ' 1 - 2 ( 8 C -  E)/(A2N),  

33 = 0°3 - 2 ( 6 D -  2 E ) / ( B  2 N) ,  

1111 = 300 2 + ( - 1 2 0 C  + 12E)/(A4N), 

1122 = 002 + ( - 4 0 C  -a t- 4E)/(m 4N),  

3333 = 300 2 + ( - 9 6  D + 2 4 E ) / (  n 4 N),  

1133 = 001o"3+ ( - 1 6 C  - 1 2 D +  IOE)/(A2B2N), 

where the normalizat ion factor N is given by Merisalo 
& Larsen (1977), equation (7). 

The temperature factor of the lAP p.d.f. (8), (9) 
and (I0) 

We abbreviate o'2zrhi = ti where hi are the Miller 
indices. The leading Gaussian function in reciprocal 
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space  is g ( t )  = exp [ - ( 2 o - ) - l ( t ~ +  t 2+ t])].  Then  the 
t e m p e r a t u r e  fac tor  is given by 

T ( t ) = g ( t ) [ l + p - 1 a ] ,  

where  

a = i/3 (kBT)  -I t~ tzt 3 - ( "y + 26) (kaT)-~( t2  + t 4 + t 4) 

_2(.y 3~) (kBT) - I (  2 2 2 2 t i t2+ t~ + t~ + t2t3) 

+ 103'( kBT ) - I (  t~ + tzz + t2)cr + [ C~ (kBT)  2 ] 

I i  t 2 t 3  - -  ( + + t 2 t 3 ) o "  lit2 tlt3 

+ (t 2 + t 2 + t]) tr  2] -- i{213 ( Y +26) (  t~t2t3 + tlt52t3 

+ tl t2t~)+ 4/3(3 ' - -36)(  tlt3t 3 + t3t2 t3 + t3t3t3) 

-- ~[44  y ---~6 ]( t3 t2t3 + tl t32t3 + tl t2t3)tr 

+/3[  198 3" - -~3~6 ] t  I t2 t3  or2} 

+[ ¢ +43'6 + t + + 

+ [ 4 3 '  2 - - 4 3 ' 6  24R2-1 --2-5 u .I 

6 2 X[t6( t] + t 2) + t2( tl + t 2) + t6( t~ + t~)] 
44 2 4 4  4 4  4 4  + [ 6 3 ' 2 - ~ y 6  +~36 ] ( t i t 2 +  t2t3) t i t3+ 

+ [ 1 2 y 2 _ _ ~ y 6  48 2 . 2 . 4 . 2  2 2 4 ( tl t2t3 + Ii I2I 3 + tI t2t3) "1- ~'~6 ] 4 2 2  

[363'2+L~43'6 64 2 6 - +296 ] ( t , +  t 6+ t6)o" 

- [ 108 ,)/2 __ 20___88 3'  6 __ 48R2- I 
25 t" .I 

X[t4(t~+t32)+ 4 2 t2(t, + t2)+ t~(t2+ t2)]o " 

_[2163,2 936 o - -  8 6 4 a 2 " 1 . 2 . 2 - 2  
- -  - ~  3"O "l- -ffff O J l l I 213 Or 

+ [378r 2 + ~ r 6  + 42-~62](t 4 + t 4 + t4)o "2 

_ t _ [ 7 5 6 3 ' 2 1 7 1 6  o - - 1 4 4 o 2 1 , _ 2 . 2  2 2 2 2 2 --W-3'o-t---3--o j ( t l t 2 +  tit3 + t2t3)or 

- [  12603, 2 + 92-~62] (t~ + t~ + t~) cr3]~. 
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Abstract 

Even w h e n  direct  me thods  fail to give a c lear  solut ion,  
E maps  f r o m  some  of  the phase  sets ob ta ined  conta in  
correct ly  o r ien ted  f ragments .  It is shown tha t  such 
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of Graduate Studies and Research, University of Alexandria, 
Alexandria, Egypt. 

i n fo rma t ion  f rom several  p h a s e  sets can be ama lga -  
ma ted  by an  a u t o m a t i c  p r o c e d u r e  to give es t imates  
o f  the values  o f  t h ree -phase  invar iants .  These  esti- 
mates  are i n c o r p o r a t e d  into a modif ied  t angen t  for- 
mula  which  is used  in a new run o f  a mul t i so lu t ion  
d i rec t -methods  p rocedure .  Tests of  the total  process ,  
cal led T R I T A N ,  reveal  tha t  it is very effective in 
de te rmin ing  s t ructures  wh ich  o therwise  w o u l d  not  be 
f o u n d  rout inely .  

0108-7673/88/030349-05503.00 O 1988 International Union of Crystallography 


